

HIE-ISOLDE Project Status Report

67th ISCC Meeting CERN, 9 July 2013 Yacine.Kadi@cern.ch

Project Organization

➢Budget 2013-2016

>Main Highlights & Issues

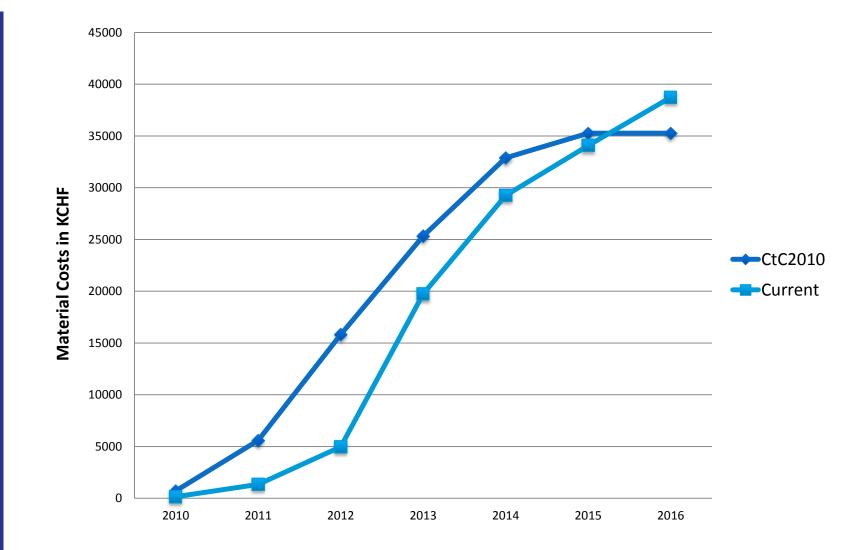
➢Outlook

Project Organization

- Nominations:
 - Walter Venturini Delsolaro (BE/RF) = > DPL
 - EMC coordinator ?
- Quality Assurance Plan:
 - Hardware Baseline in place (EDMS) and now Operational
 - Product Breakdown Structure finalized => equipment and document numbering
 - Configuration Management => EN/MEF
 - Follow-up of budget and work progress reporting => EVM set-up
 - Technical Specs handled by CERN Project Office
- Documentation:
 - HIE-ISOLDE website under re-construction => help of CATHI fellows
 - EDMS => more then 600 documents produced
 - HIE-ISOLDE project notes => 22 accessible through CDS
- Safety File:
 - Descriptive Part of the Safety File has been checked and will be circulated for approval
 - Hazard Inventory section and the Demonstrative Part are currently being checked.
 - Operation Part and the Feedback Part are being drafted

Budget 2013-2016

Summary of the request for funding from CERN approved in the MTP2013


kCHF	2013	2014	2015	2016	Total (2010-2016)
Approved					
External	4112	4946	2919	3963	17527
CERN	8392	2932	1532	401	16640
Sub-Total	12504	7878	4451	4364	34167
Applied for					
BE	555	535	80	80	1250
EN	1022	350	100	20	1492
GS	260	200	-	-	460
TE	425	545	193	192	1355
Sub-Total	2262	1630	373	292	4557*
Total	14766	9508	4824	4656	38724

*Saved (re-use of ALEPH cry-plant) 2000 kCHF

Evolution of the Cost-to-Completion: CtC 2010 = 35.3 MCHF CtC 2011 = 35.7 MCHF CtC 2012 = 36.5 MCHF approved (38.3 MCHF requested) CtC 2013 = 38.7 MCHF requested

Spending Profile

Cost: External Funding Phase 1

	Income				
		KUL	ISOLDE	In Kind	Total
	2007-2012	4.063.536	1.512.000	325.000	5.900.536
	2013-2015	465.000	1.500.000	375.000	2.340.000
		4.528.536	3.012.000	700.000	8.240.536
1.097.162					
1.097.102	Expenses	Linac+HEBT	Salaries (*)	R&D	Total
1.097.102	Expenses 2007-2012	Linac+HEBT Procurement 604.000	Salaries (*) 1.226.000	R&D 2.023.837	
1.097.102		Procurement			Total 3.853.837 5.100.000

(*) to be considered additional expenses on salaries of **6.0 MCHF** (2011-2014) already covered by EU-FP7-ITN Marie-Curie program: CATHI

The missing income of 0.7 MCHF => loan from CERN

HIGHLIGHTS: Procurement

- Civil Engineering => metallic structures (bldg 170, 198 and 199)
- CV and EL Systems => installation work on-going until Q1 2014
- Copper forgings => all high-beta cavities + 5 options (15 for 2013)
- Cavity substrate => 5 for 2013, 15 + 5 options (2014-2015) => 2 pre-series by EN/MME
- SC solenoid => 4 high-beta cryomodules + 2 options (first 2 by March 2014)
- Cavity Alignment system design and fabrication => CATE , 2 cryomodules
- Clean room at SM18 => to be delivered in August 2013
- Beam Instrumentation => contract negotiation for the short boxes
- Invitation for Tenders
 - Cryogenic Distribution System (September FC) => launched
 - CM1 and CM2 vacuum + He vessels (Price Enquiry) => launched via CERN,
 - Quadrupole & Dipole magnets with associated power supplies and supports
 - Market surveys
 - HEBT lines (vacuum system, long instrumentation boxes, inter-cryomodule supports, etc...) => in progress

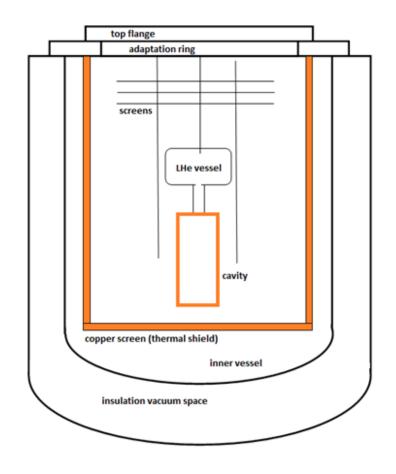
HIGHLIGHTS: Procurement

- Already engaged for Phase-2 (10 MeV/u):
 - High-beta cavities => (45+16kCHF)*10 = 610 kCHF
 - SC solenoids => (85 kCHF * 2) = 170 kCHF
 - Beam Instrumentation => (45 kCHF * 4) = 180 kCHF

HIGHLIGHTS: Technical Advances

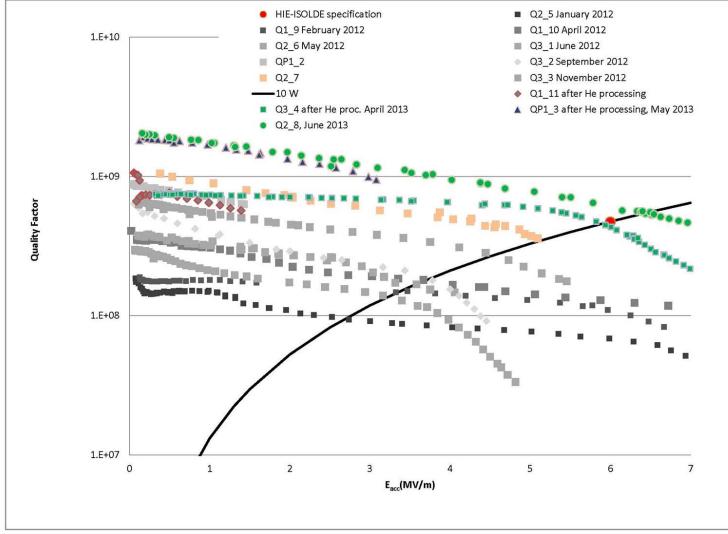
- HEBT activities => Integration and EMC issues being checked
- Design Study for the Intensity Upgrade well underway
 - Target + Front-end (FE8 and 9)
 - Offline separator test bench
 - HVAC + Cooling => nuclearization
 - Charge Breeder => assembly of electron gun, test at BNL (US)
 - Technical Workshop Nov. 28-29, 2013

- Cavity tests (more substrate, improved sputtering, procurement, etc...)
- Cavity ancillaries (RF coupler and tuner)
- LLRF (prototype, integration, etc...)
- RF controls and interlocks



Collapse of test cryostat in SM18

- Insulation vacuum space was at atmospheric pressure when inner vessel was pumped
- Inner vessel did not withstand the external pressure and collapsed
- Copper screen and stainless steel threaded bars were deformed
- Cavity and insert remained untouched
- (Likely) time of the event: sometime during first pump down, 27 April 2013

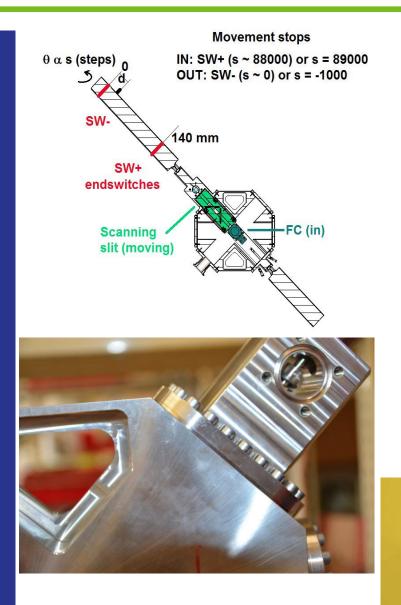


Recovery test cryostat

Decisions

- Use a spare cryostat and the old copper screen
- Install a vacuum gauge and a pumping port on the insulation vacuum space of the spare cryostat
- Timetable
 - ➢ Friday 2 May 2013: Leak test of shield circuit → OK (!); Removal of clean area roof and floor platform, cleaning tests of spare cryostat
 - Monday 6 May: Removal of damaged cryostat and shield, checks and preparation of spare shield
 - Tuesday 7 May: Transport and cleaning of spare cryostat, drying overnight
 - Wednesday 8 May: cryostat back in hall, installation of Pirani gauge and pumping port, installation of cryostat in pit, pumdown of vacuum space
 - Friday 10 May: leak test, reinstallation of clean area, conditioning
 - Monday 13 May: Installation of cavity insert (kept clean in meanwhile), pumpdown
 - Tuesday 13 May: leak detection, commissioning of cryogenics. Recovery.

Cavity tests


HIGHLIGHTS: Issues

Design of prototype Diagnostic Box

- > AVS delivered Faraday Cup which was tested at REX-ISOLDE
- Body of the DB was being tested (particule contamination and degassing) when it Failed => need to re-design mechanical part
- Additional Resources needed to develop the electronics for acquisition and motor control but also for the mechanical design => under review within BE/BI
- MS => in stand by (7 short and 13 long DBs)
- Integration issues (building 170):
 - Advance on tunnel/shielding design and integration
 - Cable routing

Failure of the prototype short DB

History log of the experimental test done with the HIE DB:

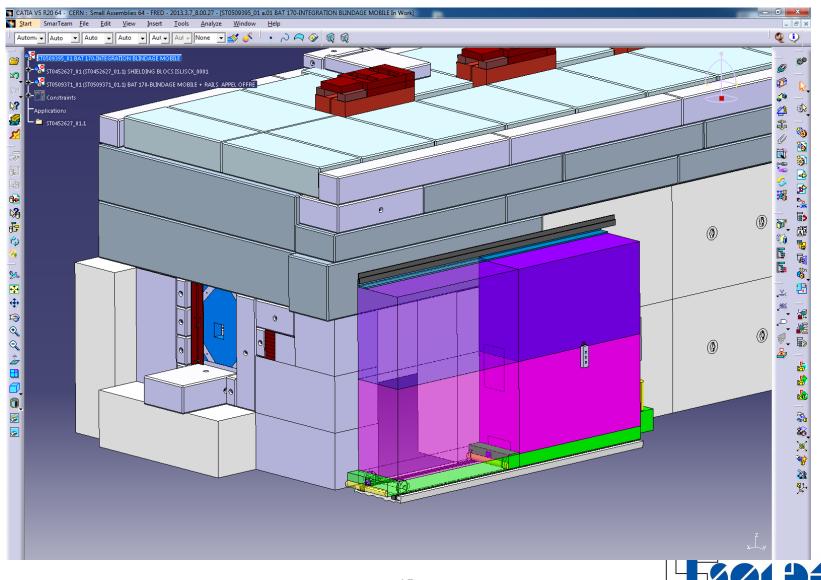
– 20 August 2012: Installation of HIE DB in REX-ISOLDE Hall

- From 20 August 2012 to 5 February 2013:

Experimental measurements with stable beams (A/q = 4 and A/q = 3.5); mainly Faraday cup test but also beam profile measurement including movement of the scanning slit (during this period, about 100 IN-OUT scans of the scanning slit were performed).

- 8-9 April 2013: Tests of the scanning slit software, approx. 350 IN-OUT cycles.
- 10-15 April 2013: Stress test of the scanning slit mechanism (run of 1340)

Total number of IN-OUT cycles of the scanning slit mechanism: approx. 1800.



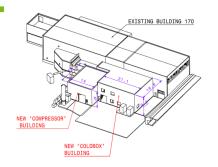
HIGHLIGHTS: Issues

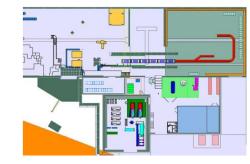
- Design of prototype Diagnostic Box
 - > AVS delivered Faraday Cup which was tested at REX-ISOLDE
 - Body of the DB was being tested (particule contamination and degassing) when it Failed => need to redesign mechanical part
 - Additional Resources needed to develop the electronics for acquisition and motor control but also for the mechanical design => under review within BE/BI
 - MS => in stand by (7 short and 13 long DBs)
- Integration issues (building 170):
 - Advance on tunnel/shielding design and integration => blocs ordered
 - Cable routing => ongoing finalizing all DICs

Shielding of HIE SC Linac (EN/HE)

Project Schedule

				20	012			—			201	2			-			2014				—			2015							2016				<u>т</u>	—		20	47		—
	H	E N				Is Io	IN ID	. 	E M						1.15	: MI	5 5 A					<u> </u>	E M	A M				N ID	IE	DAL.	A M		·	5 0			E MA				<u>ا</u> د	
Shutdown periods				NI 2	<u>م</u>	FF					, ,	~ -	, 0		1	191 2	4 191	, ,	<u> </u>	1		P		A M	<u>, ,</u>	~]	<u> </u>		· ·	- mile		, r	<u> </u>	, , ,	-	<u>r</u>	1941	~	<u>" </u>	ŕŕ		Ĕ
Civil engineering+metal structures 198,199,170			++					++							+	++	+	+	++	+	╞┼┝	+		+	+	++	++			╉┼┼	+	\vdash	++	++	+-	╇		++	+	+	++	\vdash
Power EL						++	++	+	+	+		++	+	⊢⊢			+	+	++	+	++	++	+		+	++	++	+		++	+	\vdash	++	++	+	++	+	++	+	+	↤	\vdash
Cooling and ventilation	+	\vdash	++	+	++	┼╀			+				+			++	+	+	++	+	++	++	+	+	+	++	++	+	\vdash	++	+	\vdash	++	++	+	┿	+	++	+ +	+	↤	i++
Safety systems (incendie, RAMSES, ODH)	+	\vdash	++	+	++	++	++		+			++	+				+	+	++	+	++	++	+	+	+	++	++	+	\vdash	++	+	\vdash	++	++	+	₩	+	++	+ +	+	↤	i+
Hall 170 preparation	+	\vdash	++	+	++	++	+		++							++	+	+	++	+	++	++	+	+	+	++	++	+	\vdash	++	+	\vdash	++	++	+	₩	+	++	+ +	+	↤	i++
Linac shielding (dismounting, walls, roof)	+	\vdash	++	-	++	++	┽╇	++					+	\vdash	++	++		+	++	+	\vdash	++	+		+	\vdash	++		\vdash	++	+	\vdash	++	++	+	++	+	++	+	+	┿	⊢
Survey (preparation work + tunnel work)	+	\vdash	++	+	++	++	++	┽╉				++			╆╋	┽╀		+	++		\vdash	++	+		+	++	++	+	\vdash	++	+	\vdash	++	++	+	┼┼	+	++	+	+	++	\vdash
9-gap amplifier upgrade	+	\vdash	++	-	++	++	++	++		+		++			╇	++	+	-	┢┼┝		\vdash	++	+		+	\vdash	++	+		++	+	\vdash	++	++	+	++	+-'	++	+	+	┿	⊢
	+	\vdash	++	+	++	++	++	++		+	\vdash		+					-	⊢	+	++	++	+		+	++	++		\vdash	++	+	\vdash	++	++	+	┉	+	++	+	+	┿	⊢
Cable trays, cabling and rack installation Cryo: compressor installation	+	\vdash	++	-	++	++	++	++	++	+	\vdash				+	++			++	+	++	++	+	+	+	\vdash	++		\vdash	++	+	\vdash	++	++	+	++	+	++	+	\rightarrow	++	⊢
7 1	+	\vdash	++	_	++	++	++	++	++			++	+	\vdash	┽╀			+	⊢⊢	-	++	++	+		+	\vdash	++	+	\vdash	++	+	\vdash	++	++	+	++	+-'	++	+	-+	++	⊢
Cryo: cold-box and transfer line Cryo: transfer line 170	+	\vdash	++	-	++	++	++	++	++	- 1			+	++	++	┽╄			++	-		++			+	\vdash	++	+	\vdash	++	+	\vdash	++	++	+	++	+	++	+	\rightarrow	++	⊢
	_	\vdash	++	_	++	++	++	+	++	+	_	++	_	\vdash	++	++	+	_	++	+		++			+	\vdash	++			++	+	\vdash	++	++	+	₩	+-'	++	┯	<u> </u>	╇	⊢
Remove IHS heat exchanger	+	\vdash	++	-	++	++	++	++	++	+		++		\vdash		++	+	+	++	+	++	++	+		+	\vdash	++	+	\vdash	++	+	\vdash	++	++	+	++	+	++	+	\rightarrow	++	⊢
Tunnel & HEBT infrastructure (fluids)	_	\vdash	++	_	++	++	++	++	++	+	\vdash	++	+		+++	++			++	-		++	+		+	\vdash	++			++	+	\vdash	++	++	+	₩	+-'	++	┯	<u> </u>	╇	⊢
Linac equipment installation 199	+	\vdash	++	+	++	++	++	++	++	+	\vdash	++	+	\vdash		++		+	++	+	\mathbf{H}	+		+	+	++	++	+	\vdash	++	+	\vdash	++	++	+	++	+	++	+	+	++	⊢
HEBT equipment installation 170	-	\vdash	++	_	++	++	++	++	++	+	\vdash	++	+	\vdash	+				\square			+			+	\vdash	++	+	\vdash	++	+	\vdash	++	++	+	++	+-'	++	+	+	++	⊢
Supports installation	-	\vdash	++	_	\vdash	++	++	++	++	+	\square	++	+	\vdash	++				\square	+	\vdash	++	+		+	\vdash	++		\square	++	+	\vdash	++	++	+	++	+	++	+	<u> </u>	++	⊢⊢
Power converters	-	\vdash	++	_	\vdash	++	++	++	++	+	\vdash	++	+	\vdash	++					_	\square	++	+		+	\vdash	++	+	\vdash	++	+	\vdash	++	++	+	++	+-'	++	+	+	++	⊢⊢
Power converters commissioning		\square	++		\square	\square	++	++	\rightarrow	\square	\square	++	+	\square	+	+					\square	+			+	\square	++			++	+	\square	++	++	+	\square	+	\square	\square	+	++	\vdash
Magnet installation	-	\square	++		\square	\square	++	++	\rightarrow	$-\!\!\!$	\square	++	+	\square	+	++			\square		\square	+			+	\square	++			++	+	\square	++	++	+	++	+	\square	\square	<u> </u>	++	\vdash
Magnet commissioning		\square	++		\square	\square	++	++	\rightarrow	\square	\square	++	\perp	\square	++	+					\square	++			\perp	\square	++			++	\perp	\square	++	++	\perp	\square	<u> </u>	\square	\square	\perp	++	\vdash
WIC		\square	\square			\square	++	\downarrow	\square			\square		\square	\square				\square			\square				\square	\square			\square	\perp	\square	\square	\square	\perp	\square		\square	\square	\perp	\square	\square
Beam Instrumentation		\square	++		\square	\square	++	+	\square			++				++										\square	++			\square	\perp	\square	\square	\square	\perp	\square	'	\square	\square	\perp	\square	\vdash
Survey alignment work		\square	\square			\square	\square	\square	\square			\downarrow				++						\square				\square	\square			\square	\perp		\square	\square	\perp	\square	'	\square	\square	\perp	\square	\square
vacuum		\square	\square			\square	\square	\square	\square			\square		\square	\square											\square	\square			\square		Ш	\square	\square	\perp	Ш		\square	\square	\perp	\square	\square
Cryomodule 1 (assembly, SM18 test, installation)		\square	\square			\square	\square	\square				\square		\square	\square							\square				\square	\square			\square			\square	\square	\perp	Ш		\square	\square		\square	\square
Cryomodule 2 (assembly, SM18 test, installation)																																										
Survey Cryomodule alignment																																										
Vacuum pumping and test																																										
Cryo cool down test																																										
RF power test																																										
Dry run/hardware commissioning		П				П	ТТ	П							П				П			П					П			П			П		Т	П	Т		\square	Т	П	П
Machine check-out		\square				\square		\square														П													\top	\square			\square	T	\square	\square
Beam commissioning (phase1)		П				П	ТТ	П							П				П			П								П			П		Т	П			\square	Т	П	П
Physics at 5.5 MeV/u																																				\Box						
								Cor	nstruct	tion/ir	nstal	lation	1		F	Periodi	ic dry	runs					Be	am co	mmis	sionir	ıg															
									uipmer						Ξ.	Machir						- 1		ysics a																		


EDMS No. 1143510 (April 2013 ver.14)


Conclusions

- The strategic decision to refurbish the ALEPH cryo-plant will bring an additional delay of about 6 months => already integrated
- The identified additional cost of 2.557.000 CHF to cover Material, Personnel and R&D have been included in the MTP2013 and approved by Council (June 2013).
- Re-deployment & allocation of extra resources approved:
 - \blacktriangleright cryo-module \rightarrow (in total 5 man years)
 - \blacktriangleright refurbishment of the ALEPH cryo-plant \rightarrow (in total 8.3 man years)
 - Electronics for Beam diagnostic boxes
- However it should be considered that in case extra resources related to:
 - beam instrumentation (in total 4 man years)
 are not made available, as requested, further delays will apply.
- operation budget prepared and submitted for approval.
- Reviews for 2013:
 - Cost and Schedule together with Risk Assessment => early November
 - Safety Review => early November
 - HIE-ISOLDE Technical Workshop => 28-29 November

Thank you

HIE-ISOLDE web site -> http://hie-isolde.web.cern.ch/hie-isolde/

CATHI-ITN web site -> https://espace.cern.ch/Marie-Curie-CATHI/default.aspx

