

LPSPL options for delivering ~1.4 GeV protons to the ISOLDE area

17 February 2009

Analysis

• SPL block diagram

Extraction to ISOLDE

• Main impact of faster cycling rate: klystron modulators (SPL + Linac4)

Limited $P_{average}$ + technology limited cycling rate (~ 15 Hz)

 $P_{average} \propto Modulator pulse length x Rep. rate$

 $P_{average} \propto (Modulator rise + Cavity fill + Beam pulse) \times Rep. rate$

 $\propto E^{-1}$

• Other consequences of faster cycling rate:

• Magnets power supplies

200 us

- Beam instrumentation
- Controls...

Minimum cost options

 \Rightarrow LP-SPL type modulators (P_{nominal} = 0.35 % duty cycle)

* Basic period : 600 ms – PS2 cycling time: 2.4 s

Medium cost options with higher cycling rate

⇒ Need for higher power klystron modulators

⇒ But no change of modulator technology (cycling rate ≤ 15 Hz and average power ≤ $3 \times P_{nominal} \equiv 1.05 \%$ duty cycle)

SPL

High cycling rate

- ⇒ Need for different klystron modulator technology (50 Hz cycling rate and higher power) both in Linac4 and low energy part of SPL
- \Rightarrow 10 x P_{nominal} = 3.5 % duty cycle

$$\Rightarrow$$
 33 x P_{nominal} = 10.5 % duty cycle

Requested feedback

It is economically important to implement the proper cycling rate at the time of design/construction of the LP-SPL (too late for Linac4...):

- ⇒ How much is it worth? (Upgrading the ISOLDE facility to 100-200 kW capability will already be costly: how much additional cost is acceptable?)
- \Rightarrow Interest for higher cycling rate with shorter beam pulse?
- ⇒ Which set of beam parameters make sense?