

VITO project

Versatile Ion-polarized Techniques On-line at ISOLDE (former ASPIC UHV beamline)

M. Stachura on behalf of the VITO collaboration

ISCC committee, ISOLDE/CERN, 9 July 2013

Motivation

Motivation

Collaboration Scientific goals Upgrade Timeline Budget Support Outlook

Goal of the project:

"Establishing a dedicated beamline for laser-induced nuclear orientation, which will open a wide range of possibilities for carrying out versatile and multidisciplinary experiments at ISOLDE."

Motivation:

- Versatile and multidisciplinary experiments (solid state physics, nuclear physics, biophysics....)
- β-asymmetry, β-NMR and PAC measurements (few mbar 10⁻¹² mbar)
- Ultra-high vacuum beamline (RB0) and ASPIC setup already existing
- ASPIC: partly maintained, ready for off-line experiments in 2013 (with ¹¹¹In)
- β-NMR setup from the tilted foil assembly (based on agreement with tilted foil collaboration)
- One open end station

Advantages:

- Upgrade of an existing setup
- Minimum budget required

VITO Collaboration

Motivation Collaboration Scientific goals Upgrade Timeline Budget Support

At ISOLDE:

Alexander Gottberg FN-STI

Mark Bissell

COLLAPS

Magdalena Kowalska **ISOLDE PH coordinator**

Karl Johnston ISOLDE SSP coordinator

Ronald Garcia COLLAPS, CRIS

Joao M. Correia SSP

Solid state physics:

- M. Deicher University of Saarland, Germany
- Z. Salman PSI, Switzerland
- V. Amaral Universitty of Aveiro, Portugal
- J. Röder Aachen University, Germany
- K. Potzger Dresden Rossendorf, Germany
- R. Kiefl The University of British Columbia, Canada
- A. MacFarlane The University of British Columbia, Canada
- L. Pereira IKS Leuven, Belgium

Nuclear physics:

- G. Neyens IKS Leuven, Belgium
- N. Severijns IKS Leuven, Belgium
- D. Yordanov Max-Planck Institute Heidelberg, Germany

Biophysics:

- L. Hemmingsen University of Copenhagen, Denmark
- A. Jancso University of Szeged, Hungary

VITO Collaboration Meeting

Motivation Collaboration Scientific goals Upgrade Timeline Budget Support Outlook

Collaboration meeting 6th September 2013 (CERN)

- M. Deicher University of Saarland, GE
- Z. Salman PSI, CH
- G. Neyens IKS Leuven, BE
- V. Amaral University of Aveiro, PT
- L. Hemmingsen University of Copenhagen, DK
- R. Neugart University of Mainz, GE
- L. Pereira IKS Leuven, BE
- D. Yordanov Max-Planck Institute Heidelberg, GE

- A. Gottberg EN-STI, CERN, CH
 J. Röder Aachen University, GE
 R. Garcia IKS Leuven, BE
- K. Potzger Dresden Rossendorf, GE
- A. Fenta University of Aveiro, PT
- M. Bissell IKS, Leuven, BE
- K. Johnston University of Saarland, GE
- M. Stachura PH, CERN, CH

Motivation Collaboration Scientific goals Upgrade Timeline Budget Support Outlook

Letter of Interest to the INTC Committee

INTC-0-017

Spokesperson(s): M.Deicher and M. Stachura

2.1.1 Surface mediated magnetism in metal-oxide semiconductors

M. Deicher, K. Johnston, J. Lehnert, Th. Wichert, H. Wolf

2.1.2 Interaction and dynamics of add-atoms with 2-dimentional structures

(PAC studies of mono- and low-number of stacking surfaces)

V. Amaral, A. Gottberg, J.G. Correia, K. Johnston and the IDADS collaboration

2.1.3 Solar Cells Studies with ASPIC and PAC

J. Röder, A. Gottberg, T. Beckers, M. Martin

2.1.4 Low energy β-NMR for studies on condensed matter

Z. Salman

2.2.1 Bio-β-NMR spectroscopy on liquid samples

Evaluated by the INTC committeel L. Hemmingsen, M. Stachura, A. Gottberg, M. Kowalska, P.W. Thulstrup

2.2.2 β-decay studies of laser-polarized radioactive beams

D. T. Yordanov for the proponents of INTC-I-090

2.2.3 V_{ud} from the β asymmetry parameter of mirror β transitions

N. Severijns, G. Neyens, M. Bissell

Beamline Overview (existing)

Motivation Collaboration Scientific goals Upgrade Timeline Budget Support Outlook

Beamline Upgrade (VITO, proposed)

Beamline Upgrade (VITO)

Possible influence <u>on</u> other setups:

- Minimized influence on HIE-ISOLDE, REX, WITCH, TAS and ISOLTRAP
- Access to the central beamline sustained

Timeline and Milestones

Motivation Collaboration Scientific goals Upgrade Timeline Budget Support Outlook

Preliminary budget: BMBF: 70 000 Euro ISOLDE collaboration: 8 000 Euro Biophysics: 2 500 Euro Starting budget: 80 000 Euro Optical pumping section from COLLAPS! 2 lasers (Nd-YAG and Ti-sapphire) from Saarbrucken!

Grants:

- Knowledge Transfer Found (CERN) deadline in September 2013
- Carlsberg Foundation (Denmark) deadline in October 2013
- Danish Research Council (Denmark) deadline in November 2013
- Lundbeck Foundation (Denmark) deadline in May 2014
- ERC grant high grade, possible resubmission in 2014

Instruments, positions

Motivation Collaboration Scientific goals Upgrade Timeline Budget Support Outlook

From the ISOLDE collaboration:

Permission to re-locate the occupied space in the hall

From the physics group:

- Support during the beamline alignment and positioning (surveying team)
- Support in covering the initial VITO networking expenses (collaboration meeting in September)

Summary and Outlook

Motivation Collaboration Scientific goals Upgrade Timeline Budget Support Outlook

VITO project:

- Dedicated beamline with laser-induced spin-polarization at ISOLDE
- Three end stations: ASPIC, β-NMR and travelling experiments
- Versatile and multidisciplinary experiments (solid state physics, nuclear physics, biophysics)
- Modification of an existing UHV line, polarization assembly from COLLAPS collaboration
- Beam time request: ~ 70 shifts (20 different isotopes) over the period of 2-3 years, starting in summer 2014

Advantages:

- Upgrade of an existing beamline
- ASPIC chamber maintained, restarted, ready for off-line experiments in 2013
- β-NMR setup from tilted foil assembly
- One open end station for travelling experiments
- > No other competitive beamline at ISOLDE
- > No other competitive beamline in the world
- > ASPIC unique experimental apparatus in the world
- > β -NMR multidisciplinary experiments (few mbar 10^{-12} mbar; SSP, biophysics, nuclear physics)
- High prospective scientific impact

Thank you!

ASPIC Apparatus

Beamline Overview (existing)

Beamline Upgrade (VITO, proposed)

Radioactivity

Mother	Decaying to	Life-time
⁸ Li	$^{8}\text{Li} \rightarrow {}^{8}\text{Be} (67 \ 10^{-18} \text{ s}) \rightarrow {}^{4}\text{He}$	838 ms
¹¹ Be	¹¹ B	13.8 s
²¹ Na	²¹ Ne	22.5 s
³³ Na	33 Na $\rightarrow ^{33}$ Mg $\rightarrow ^{33}$ Al $\rightarrow ^{33}$ Si $\rightarrow ^{33}$ P (25d) $\rightarrow ^{33}$ S	8.2 s
²³ Mg	²³ Na	11.3 s
³¹ Mg	$^{31}\text{Mg} \rightarrow ^{31}\text{Al} \rightarrow ^{31}\text{Si} (2.6\text{h}) \rightarrow ^{31}\text{P}$	230 ms
³³ Mg	$^{33}Mg \rightarrow ^{33}Al \rightarrow ^{33}Si \rightarrow ^{33}P (25.3 \text{ d}) \rightarrow ^{33}Si$	90 ms
³⁵ Ar	³⁵ Cl	1.8 s
⁵⁸ Cu	⁵⁸ Ni	3.2 s
⁷⁴ Cu	$^{74}Cu \rightarrow ^{74}Zn \rightarrow ^{74}Ca \rightarrow ^{74}Ge \rightarrow ^{33}S$	1.6 s
^{77m} Zn	77m Zn \rightarrow 77 Ga \rightarrow 77 Ge \rightarrow 77 As (38.8 h) \rightarrow 77 Se	1.05 s
⁷³ Se	⁷³ As	7.15 h
⁷⁷ Br	⁷⁷ Se	57 h
^{80m} Br	⁸⁰ Br	4.4 h
¹¹¹ In	¹¹¹ Cd	2.8 d
¹¹¹ Ag	¹¹¹ Cd	7.5 d
^{111m} Cd	¹¹¹ Cd	48 m
¹⁴⁰ La	¹⁴⁰ Ce	1.7 d
¹⁴⁷ Gd	¹⁴⁷ Eu	38 h
¹⁷² Lu	¹⁷² Yb	6.7 d
^{199m} Hg	¹⁹⁹ Hg	42 m

UHV Beamline

Motivation Collaboration Scientific goals Upgrade Timeline Budget Support Outlook

Suggested upgrade of the UHV beamline

2.1.1 Surface mediated magnetism in metal-oxide semiconductors

M. Deicher, K. Johnston, J. Lehnert, Th. Wichert, H. Wolf

Fig. 3. Computed values of the Curie temperature T_{C} for various p-type semiconductors containing 5% of Mn and 3.5 \times 10²⁰ holes per cm³.

Can surface effects affect magnetic behaviour in semiconductors?

Already know that magnetic behaviour can be mediated by defects (even non metallic...)

Recent reports discuss the possibility of surface defects critically affecting ferromagnetism in ZnO ...

Use PAC + "soft landing" to probe different relevant configurations of impurities.

Possibility to extend studies to other materials: e.g. to investigate the recent observation of ferromagnetism in Cudoped ZnSe...

Nature Nanotechnology 7,792–797 (2012)

Estimated number of shifts: ^{111m}Cd (10 shifts)

ASPIC end station

2.1.2 Interaction and dynamics of add-atoms with 2-dimentional structures (PAC studies of mono- and low-number of stacking surfaces)

V. Amaral, A. Gottberg, J.G. Correia, K. Johnston and the IDADS collaboration

Interaction and Dynamics of Add-atoms with 2-Dimensional Structures

Hyperfine Techniques (PAC) + Add-atoms + ASPIC *a unique way to probe graphene (and more) at its 2D-scale*

coordination mechanisms

• stability on top, within and under graphene layer

• catastrophic charge renormalization phenomena

• properties tunability by selective doping: new states (Spin-Hall Effect and Spin-

orbit coupling /Topological Insulators)

nucleation of artificial functional nanostructures

Understand Extreme Properties of Graphene and other 2D materials Energy and Sensor Technologies

Estimated number of shifts: ⁷⁷Br/⁷⁷Se, ⁷³Se/⁷³As, ^{80m}Br/⁸⁰Br, ^{111m}Cd/¹¹¹Cd, ¹¹¹In/¹¹¹Cd, ¹⁴⁰La/¹⁴⁰Ce, ¹⁴⁷Gd/¹⁴⁷Eu, ¹⁷²Lu/¹⁷²Yb, ^{199m}Hg/¹⁹⁹Hg (18 shifts)

ASPIC End Station

2.1.3 Solar Cells Studies with ASPIC and PAC

J. Röder, A. Gottberg, T. Beckers, M. Martin

- Study of interfaces and layers of solar cells like Cu(In,Ga)Se and muli-layer solar cells
- Third generation semiconductors: multi-layers of different types of semiconductors and their interaction
- Address aging effects of solar cells
- Surface investigations

- Gold-Aluminium contacts used, e.g. in space devices and solar cells have problem of purple plague
 - Study of the interface phase changes

Estimated number of shifts: ¹¹¹Ag, ¹¹¹In, ^{111m}Cd, ^{198m}Ag (10 shifts)

2.1.4 Low energy $\beta\text{-NMR}$ for studies on condensed matter

Z. Salman

Bulk vs. Interface

What happens near and interface between two materials A and B?

- We go from 3D to 2D system
- Changes in magnetic, electronic and structural properties.

Questions:

- How/why do the properties change?
- What is the length scale of changes?
- Can we classify these changes?

Motivation:

- Better understanding of both bulk and interface
- Application in devices.

Estimated number of shifts: ⁸Li, ¹¹Be, ¹⁵O

Example:

Both LaAlO₃ and SrTiO₃ are insulating and non-magnetic.

The interface between them becomes

conducting/metallic and magnetic.

β-NMR Spectroscopy End Station

2.2.1 Bio- β -NMR spectroscopy on liquid samples

L. Hemmingsen, M. Stachura, A. Gottberg, M. Kowalska, P.W. Thulstrup

1. Proof of principle: ³¹Mg²⁺ in ionic liquid (EMIM-Oac) – done!

2. Other biologically essential metal ions in EMIM-OAc

(EMIM-OAc = solvent)

3. Observing metal ion binding to a molecule (using high affinity fluorophores) in ionic liquid solution

For example FluoZinTM-3 from Invitrogen http://products.invitrogen.com/ivgn/product/F24194

4. Perspectives: Metalloproteins and nucleic acids in aqueous solution

Estimated number of shifts: ³¹Mg, Ca, ⁵⁸Cu, ⁷⁴Cu, ^{77m}Zn (30 shifts)

β-NMR Spectroscopy End Station

2.2.2 β -decay studies of laser-polarized radioactive beams

D. T. Yordanov for the proponents of INTC-I-090

- Alternative geometry for the optical pumping \rightarrow no need of a 90° turn of the polarization direction
 - No need of the bending magnetic field
- Higher degree of polarization
- Small permanent magnets
- Efficient detection system

Estimated number of shifts: ³³Na, ³³Mg

β-NMR Spectroscopy End Station

2.2.3 V_{ud} from the β asymmetry parameter of mirror β transitions N. Severijns, G. Neyens, M. Bissell

 $V_{ud} (0^+ \rightarrow 0^+) = 0.97425 \pm 0.00022$

only factor of 2 difference !!

- polarize ³⁵Ar using collinear optical pumping and implant in host lattice

- measure β asymmetry with two Δ E-E telescopes (0° and 180° w.r.t. polar. dir.)

- avoid need for precise determination of nucl. polar. by relative measurement of β asymmetry for mixed mirror trans. and pure GT trans. to excited state

- ²¹Na and/or ²³Mg to optimize method while developing polarized ³⁵Ar beam

Estimated number of shifts: ²¹Na, ²³Mg, ³⁵Ar ₂₇

Summary and Outlook

VITO project:

- Dedicated beamline with laser-induced spin-polarization at ISOLDE
- Three end stations: ASPIC, β-NMR and travelling experiments
- Versatile and multidisciplinary experiments (solid state physics, nuclear physics, biophysics)
- Modification of an existing UHV line, polarization assembly from COLLAPS collaboration

Beam time request (2014 – 2016):

- 7 proposals and LoIs (only in the first round)
- Approx. 70 shifts spread over a period of 2-3 years, starting in 2014 (20 different isotopes)

Advantages:

- Upgrade of an existing beamline
- ASPIC chamber maintained, restarted, ready for off-line experiments in 2013
- β-NMR setup from tilted foil assembly
- one open end station for travelling experiments

