

HIE-ISOLDE

CERN-ISOLDE towards the future!

Mats Lindroos

Acknowledgements to Pierre Delahaye, Fredrik Wenander, Didier Voulot, Bruce Marsh, Valentin Fedosseev, Olli Launi, Matteo Passini, Peter Butler, Adrian Fabich, Matteo Pasini, Sergio Calatroni, Vittorio Parma, Michele Modena and all my colleagues at ISOLDE

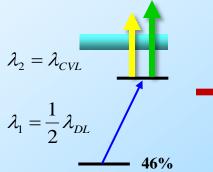
HIE-ISOLDE: Next step with three objectives

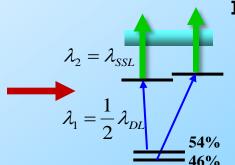
- ✓ REX energy upgrade and increase of current capacity
 - Energy upgrade in 3 stages: 5.5 MeV and 10 MeV/u and lower energy capacity
 - REX trap and charge breeder upgrade
- ✓ ISOLDE proton driver beam intensity upgrade strongly linked to PS Booster improvements including linac4
 - Faster cycling of the booster
 - New target stations for ISOLDE
 - New targets
 - New target handling system
- ✓ ISOLDE radioactive ion beam quality more than half already financed through the ISOLDE collaboration
 - Smaller longitudinal and transverse emittance
 - Higher charge state for selected users
 - Better mass resolution
 - Target and ion source development e.g. RILIS

Upgrade of RILIS lasers at ISOLDE

Diode Pumped Solid State Nd: YAG Lasers as replacement of Copper Vapor Lasers:

CVL 15 ns @ 11 kHz SSL 8 ns @ 10 kHz


Green Beams 45 W @ 511 nm Green Beams 92 W @ 532 nm


Yellow Beams 35 W @ 578 nm UV Beam 18 W @ 355 nm

IR Beam 45 W @ 1064 nm

Ga ion beam has been produced with the SSL

Improvement of ionization efficiency by SSL:

- Two dye lasers were applied at 1st
 step of excitation x 2.2
- More power could be delivered to HRS target at the 2nd step of excitation

And CVLs are still available for ru

Total all parts of project

		Swiss Francs		
		Still required		
		Staff	Material	
		FTE	kCHF	
1a	LINAC prototyping and cryo design	5.5	425	
1b	LINAC 3.0 - 5.5 MeV/u	25.5	6,888	
1c	Linac 5.5 - 10 MeV/u	19.0	3,350	
1d	LINAC lower energies	9.5	,	
1e	Beam lines for experimental area	1.0	500	
2	REX trap and charge breeder	12.1	2,238	
3	TS consolidation		2,000	
	REX UPGRADE	72.6	16,726	
4	Targets & Front-ends	25.8	8,100	
5	PSB 900 ms	9.0	2,000	
	PROTON DRIVER BEAM	34.8	10,100	
6	RFQ cooler	0.0	500	
7	RILIS upgrade	0.0	2,400	
8	High-charge state beams	1.1	800	
9	New HRS	0.8	1,100	
	BEAM QUALITY	1.9	4,800	
10	Radiation protection consolidation	1.0	750	
11	Vacuum consolidation	8.5	2,408	
	CONSOLIDATION	9.5	3,158	
	TOTAL	118.8	34,784	
	Total Material	34,784		
	Total Personnel	10,000		

HIE-ISOLDE: Where are we?

- External grant from Belgium
 - 1 engineer post Matteo
 - 1.3 MCHF for R&D on SC linac
- Second grant from Belgium approved for both physics programme and SC linac construction for HIE-ISOLDE
 - 2.7 MCHF (540 kCHF per year for 5 years) for the SC linac construction
- Proposal in the UK to finance SC linac development and construction
- Pre-study in Finland for new remote handling system
- RFQ cooler WP and RILIS WP financed and (almost) completed
- Statement of Interest for proposal in the US to develop new hihj intenity EBIS/T for HIE-ISOLDE, FRIB, HRIBF and ISAC-II
 - Support letter ISC and ISOLDE
- UK Phd Student and Post-doc starting at ISOLDE in July
- WP in EUCARD proposal for R&D on thin film techniques
 - 1.5 MCHF in total budget (30% from EU)
 - 500 kCHF for HIE-ISOLDE relevant items (30% external)
 - Partners should be: IPJ-Polen, CI, LNL-INFN, IN2P3-IPNO, DESY
- Discussions with CERN Mgt on CERN contribution.

HIE-ISOLDE: Where are we?

		Swiss Francs				
		Still required		Received		
		Staff	Material	Staff	Material	
		FTE	kCHF	FTE	kCHF	
1a	LINAC prototyping and cryo design	0.0	425	5.5		
1b	LINAC 3.0 - 5.5 MeV/u	25.5	2,416		4,472	
1c	Linac 5.5 - 10 MeV/u	19.0	3,350			
1d	LINAC lower energies	9.5	1,325			
1e	Beam lines for experimental area	1.0	0		500	
2	REX trap and charge breeder	12.1	2,238			
3	TS consolidation		2,000			
	REX UPGRADE	67.1	11,754	5.5	4,972	
4	Targets & Front-ends	25.8	8,040		60	
5	PSB 900 ms	9.0	2,000			
	PROTON DRIVER BEAM	34.8	10,040	0.0	60	
6	RFQ cooler	0.0	0		500	
7	RILIS upgrade	0.0	0		2,400	
8	High-charge state beams	1.1	800			
9	New HRS	0.8	1,100			
	BEAM QUALITY	1.9	1,900	0.0	2,900	
10	Radiation protection consolidation	1.0	750			
11	Vacuum consolidation	8.5	2,408			
	CONSOLIDATION	9.5	3,158	0.0	0	
	TOTAL	113.3	26,852	5.5	7,932	
	Total Material		34,784			
	Total Personnel	10,000				
	PHASE I	27.5	5,591	5.5	7,932	
	Total Material Phase I	13,523				
	Total Personnel Phase I	2,778				

HIE-ISOLDE: My comments on open issues

- The original cost estimate reflects well the cost for manufacturing e.g. a SC linac as the ISAC-II linac at TRIUMF
 - The cost estimate for *manufacturing* is probably within 10% of actual cost if compensated for inflation
 - CERNs mission is not to "manufacture" but to do "R&D" e.g. to push SC linac technology, the internal CERN HIE staff budget must be permitted to reflect this
 - The sharing of work on several institutes will result in additional costs
- The collaboration can ask for grants for hardware which isn't considered general infrastructure
 - 18.6 MCHF out of 34.4 MCHF in total material budget
 - Only very small staff contributions to be expected from users for staff working at CERN on technical items
- The cost of the experiments weren't included in the initial cost estimate, they should be included now
 - In line with new project contribution model used for FAIR and promoted by OECD and IUPAP; investments in experiments and contributions with staff for running experiments are included in external contributions